(6) + (7) + (8)
$$y'' + y' + y = e^{2x} \{ (-5 + 4 + 1) \sin 3x + (12 + 6) \cos 3x \} = 18 \cos 3x$$

Assignment for functions satisfying D.E.

(1) $y = 2x^3 - x^2$; $xy' - 3y = x^2$. (2) $y = \frac{1}{2}\cos x$; $y'' + 9y = 4\cos x$. (3) $y = \sin x + \cos x - e^{-x}$; $y' + y = 2\cos x$. (4) $y = 3e^{-2x} + 4e^{-x}$; y'' + 3y' + 2y = 0. (5) $y = t\sin 2t$; $y'' + 4y = 4\cos 2t$. (6) $y = 5xe^{-4x}$; y'' + 8y' + 16y = 0. (7) $y = e^{-3x}\sin 2x$; $y'' - 5y = -12e^{-3x}\cos 2x$.

Applications of differential equations

(1) When a hockey player strikes a puck with a certain force at t = 0 the puck moves along the ice with velocity at any time thereafter given by the expression v(t) = 27 - 9 \bar{t} *m/sec.* How far would the puck travel on a long sheet of ice before coming to rest? (Asumme s(t) = 0 at t = 0.) *Solution:* $\frac{ds}{dt} = v(t)$. Therefore

$$s = ds = v(t)dt = (27 - 9 \ \overline{t})dt = 27t - \frac{9t^{3/2}}{3/2} + C$$
$$= 27t - 6t^{3/2} + C.$$

At t = 0, s(t) = 0 = 27(0) - 6(0) + C. Therefore C = 0. When the puck stops, v(t) = 0 = 27 - 9 \bar{t} . Hence 9 $\bar{t} = 27$ so $\bar{t} = 3$. Therefore t = 9 sec. Substituting in the equation for s, $s(9) = 27(9) - 6(9)^{3/2}$

Solution: (a) Separating the variables we have

$$\frac{dv}{-v^2} = 0.04 \ dt$$
 or $-v^{-2}dv = 0.04 \ dt$.

 $\frac{-v^{-1}}{-1} = 0.04t + C$ or simplifying $\frac{1}{v} = 0.04t + C$. Now applying the initial conditions, when t = 0, v = 10 *m/sec.* so 1/10 = C. Therefore

$$\frac{1}{v} = 0.04t + \frac{1}{10} = \frac{0.4t + 1}{10}.$$
 Inverting the equation $v = \frac{10}{1 + 0.4t}.$
(b) When $t = 10$ sec.,

$$V = \frac{10}{1 + (0.4)(10)} = 10$$

- (4) a train is travelling at 64 *km/hr*. when the caboose suddenly becomes detached. If the friction of the rails provides a deceleration of $a = \frac{dv}{dt} = -2v^{3/2} \frac{km/hr^2}{hr^2}$, how fast will the caboose be going after $\frac{1}{4}$ of an hour? (Hint: Solve the D.E. $-\frac{dv}{v^{3/2}} = 2dt$)
- (5) A population of whales grows at the rate $\frac{dP}{dt} = \frac{2}{3}P^{1/4}$. If P = 16 when t = 0 years, how many whales will there be after 38 years?
- (6) The volume of water in a tank is given by $V = 8h^{3/2}$. Therefore

$$h^{3/2} = \frac{V}{8}$$
 or $h = \frac{V}{8}^{2/3} = \frac{V^{2/3}}{4}$.

If the water drains from the tank according to Toricelli's law, then

$$\frac{dV}{dt} = -2 \quad \overline{h} = -2 \quad \overline{\frac{V^{2/3}}{4}} = -2\frac{V^{1/3}}{2} = -V^{1/3} \quad \frac{dV}{V^{1/3}} = -dt.$$

(a) If the tank is initially filled with 125 m^3