Dawson College Mathematics Department Final Examination 201-105-DW

Wednesday, December 22, 2010

Student Name:	
Student I.D. #:	
Teacher:	
Instructors: L. Frajberg, G. Honnouvo, O. Zlotchevskaia	
TIME: 14:00 – 17:00 (3 hours)	
INSTRUCTIONS:	

1. (6 marks) If
$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 2 \\ 1 & -1 \\ 1 & 3 \end{bmatrix}$,

find i)
$$3A - 2B^T$$
.

2. (4 marks) If
$$(2A^T)^{-1} = \begin{bmatrix} 4 & 1 \\ 7 & 3 \end{bmatrix}$$
, find A.

3. (5 marks) Find the general solution of the following system using Gauss or Gauss Jordan method.

$$x_1 +2x_2 -2x_3 = 3$$

$$2x_1 - 5x_2 + 4x_3 = 6$$

$$-x_1 + 16x_2 - 14x_3 = -3$$

4. (7 marks)

5. (4 marks) If $A^2 - 3A + 2I = 0$, find A^{-1}

- 6. (10 marks)
 - Suppose A is a 3x3 matrix such that $det(2A^{-1}) = 3$, find det A.

ii) If A is a 3x3 matrix $find \det (3A^T A^2)$ given that $\det A = 2$.

iii) If det A = 2, what is det $(A^{-1} + 3adj A)$? Assume A is 2x2.

7.

9. (4 marks) Consider $\frac{(k-2)x+4y=0}{x+(k+1)y=0}$ For which values of k will the system have nontrivial (non-zero) solutions?

11. (5 marks) If A(1,-2,1), B(3,1,4), C(4,1,-1) are the vertices of a triangle, find the area

13. (4 marks) Find the parametric equations of the line which passes through P(1,-1,2) and is perpendicular to the plane whose equation is -4x+3y+z+-10=0.

14. (4 marks) Find the equation of the plane through P(4,-2,1) which is parallel to <u>both</u> $\vec{u} = [2,1,3]$ and $\vec{v} = [1,-2,0]$.

18. (8 marks) Minimize $z = 4x_1 + 3x_2$ subject to the constraints

$$2x_1 + 3x_2 \ge 8$$

$$2x_1 + x_2 \ge 14$$

$$(x_1 \ge 0, x_2 \ge 0)$$