Dawson College Mathematics Department Final Examination

Q1 (5 marks each). Evaluate the following integrals:

a)
$$\frac{13-13x}{(x+7)(x^2+3)}dx$$
 b)

....Q1 continues]
c)
$$\frac{x^2 dx}{\sqrt{1-4x^2}}$$
 d) $\frac{{}^{16}}{\sqrt{x}(1+\sqrt[4]{x})} dx$

....Q1 continues] e) $x^2 \sin(3x) dx$

Q2 (5 marks). Find the arc length of the graph of $f(x) = x^{3/2} - 1$ over $0 \le x \le 4$.

Q5 (5 marks each). Evaluate the following limits: $2x + e^{-2x} = 1$

a)
$$\lim_{x \to 0} \frac{2x + e^{-2x} - 1}{3x^2 - x + \sin x}$$
 b) $\lim_{t \to \infty} (1 - \frac{4}{t})^{3t}$

Q6 (5 marks each). For each of the following, determine whether the given integral converges or diverges. If it converges, find its value. ~ 4

a)
$$\frac{dx}{1} \frac{dx}{x(1+(\ln x)^2)}$$
 b) $\frac{dx}{0} \frac{dx}{(4-x)^{3/2}}$

Possibly useful Summation Formulas

 $\sum_{i=1}^{n} c = cn , \qquad -----$

Q8 (5 marks) A ball bearing is dropped from a height of 8 meters onto a heavy metal plate. The ball bounces each time to a height that is 7/10 of its preceding height. Assuming that the ball continues to bounce indefinitely, find the total distance that it travels.

(d) $\sum_{n=1}^{\infty} \frac{n^4 + 3}{n^3 (n^3 + 2)}$

Q10. (4 marks) In a certain city the temperature *T* (in °*F*), *t* hours after 10 am., was modeled by the function $T(t) = 70 + 10 \sin \frac{\pi t}{12}$. What was the average temperature between noon and 6 pm.?

Q11 (5 marks) Find the 4th degree Taylor polynomial of $f(x) = \sin(2x)$ centered at $a = \pi/6$.