DAWSON COLLEGE MATHEMATICS DEPARTMENT Final Examination

Mathematics 201-NYC-05 **Linear Algebra (Regular)** Instructors: Melanie Beck, Yann Lamontagne Date: Tuesday, May 18, 2010

Time: 2:00 - 5:00

1. Consider the following system of equations:

- (a) (5 marks) Find all solutions using Gauss-Jordan elimination.
- (b) (2 marks) Find any two particulars solutions.
- 2. Consider the matrices

Compute whenever it is possible:

- (a) (2 marks) A^{-1}
- (b) (2 marks) C^{-1}
- (c) (2 marks) $(3A \ I)B \ C^T$
- (d) (2 marks) det(3B)
- (e) (2 marks) trace(AC)^T

3. Let
$$A = \begin{pmatrix} 2 & 1 & 0 & 0 & 3 \\ 4 & 0 & 2 & 0 & 1 & 5 \\ 0 & 3 & 1 & 1 & 5 \\ 1 & 2 & 0 & 0 & 0 \end{pmatrix}$$
 and B a 4 4 matrix with $det(B) = 3$.

- (a) (3 marks) Find det(A).
- (b) (3 marks) Find det($3A^{-1}B^{2}$).
- 4. (5 marks) Prove that if $A^T A = A$, then A is symmetric and $A = A^2$.
- 5. (5 marks) Show that if a square matrix A satis es $A^2 + A + I = 0$, then A is invertible and $A^{-1} = 4I + A$.

6. **(4 marks)** Solve for
$$x$$
: $\begin{pmatrix} x & 0 & 3 \\ 0 & x+1 & 5 \\ 0 & 0 & 2 \end{pmatrix}$ $4 = \begin{pmatrix} 4 & 4 \\ x & 5 \end{pmatrix}$

7. Consider the matrices

$$A = \begin{bmatrix} 3 & 4 & 5 & \# \\ 1 & 0 & 2 \\ 2 & 3 & 4 \end{bmatrix} B = \begin{bmatrix} 2 & 4 & 3 & \# \\ 1 & 0 & 2 \\ 2 & 3 & 4 \end{bmatrix} C = \begin{bmatrix} 1 & 2 & 3 = 2 & \# \\ 0 & 2 & 1 = 2 \\ 0 & 7 & 7 \end{bmatrix}$$

- (a) (2 marks) Is it possible to $\$ nd an elementary matrix E_1 such that $E_1A = B$? If yes, what is E_1 ? If no, justify.
- (b) (2 marks) Is it possible to $\$ nd an elementary matrix E_2 such that $E_2B=C$? If yes, what is E_2 ? If no, justify.
- 8. Consider the following system of equations:

$$3x + 2y = 12$$

 $x + 4y = 7$

- (a) (3 marks) Solve the system using Cramer's rule
- (b) (3 marks) Solve the system using the inverse of A.

- 9. Given u = (3/0/1), v = (-2/1/2) and w = (4/2/1), nd
 - (a) **(2 marks)** *ku vk*
 - (b) (2 marks)